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Formulation: The Inventory Process

▶ The inventory process (in the absence of orders):

dX0(t) = µ(X0(t))dt+σ(X0(t))dW (t), X (0) = x0 ∈ I = (a, b),

where −∞ ≤ a < b ≤ +∞.
▶ In the absence of restocking

▶ demands tend to reduce the inventory

⇝ a is an attracting
point:

Px{τa+ ≤ τr} > 0,∀a < x < r < b.

a may be a regular, exit or natural boundary point.
▶ reasonable restrictions on “returns”: the inventory level can

never reach b in finite time ⇝ b is a non-attracting point:

Px{τb− ≤ τr} = 0,∀a < r < x < b.

b may be an entrance or natural point.
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Inventory Management

The manager can decide WHEN and HOW MUCH to restock the
inventory:

WHEN: 0 ≤ τ1 ≤ τ2 ≤ τ3 ≤ . . .

HOW MUCH: Y1

∨
Y2

∨
Y3

∨
. . .

For each k = 1, 2, . . . ,

▶ τk , the kth order time, is an {Ft}-stopping time, and

▶ Yk , the kth order size, is an {Fτk}-measurable nonnegative
random variable.

▶ X (τk−): the inventory level just before the kth order,

▶ X (τk): the inventory level at the kth order,

X (τk) = X (τk−) + Yk ≥ X (τk−)
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Admissible Policies

▶ A = {(τ,Y ) = (τk ,Yk), k = 1, 2, . . . }, in which
▶ {τk} is an increasing sequence of {Ft}-stopping times,
▶ Yk is an {Fτk}-measurable nonnegative random variable,
▶ X (τk) = X (τk−) + Yk ∈ E (the state space).

▶ For models in which a is a reflecting boundary point, the class
A0 ⊂ A consists of those policies (τ,Y ) for which

lim
t→∞

t−1E[La(t)] = 0



Inventory Management

▶ The controlled inventory

X (t) = X (0−) +

∫ t

0
µ(X (s))ds +

∫ t

0
σ(X (s))dW (s) +

∞∑
k=1

I{τk≤t}Yk ,

X (t) ∈ E ,

▶ The state space E :

E =


(a, b), if a and b are natural boundaries,

[a, b), if a is attainable and b is natural,

(a, b], if a is natural and b is entrance,

[a, b], if a is attainable and b is entrance.



The (s, S) Policy

Question: Is the (s,S)-policy optimal? In what sense?



Long-term Average Cost

▶ c0 : I → R+: holding/back-order cost rate.

▶ c1 : R → R+: ordering cost function, where

R = {(y , z) ∈ E2 : y < z}, R = {(y , z) ∈ E2 : y ≤ z}.

▶ ∃k1 > 0 s.t. c1 ≥ k1; thus k1 is the fixed cost for each order.

Long-term Average Cost:

J(τ,Y ) := lim sup
t→∞

1

t
Ex0

[∫ t

0
c0(X (s))ds

+
∞∑
k=1

I{τk≤t}c1(X (τk−),X (τk))

]
.
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Long-term Average Control Problems
The Usual Approaches

▶ Vanishing discount method ([?, ?]):
▶ Discount problem

αvα(x) + F (x ,Dvα(x),D2vα(x)) = 0,

▶ the limiting behavior of −αvα and vα(x)− vα(x0) as α ↓ 0.

▶ Long-term average HJB equation [?, ?, ?]:

F (x ,Du(x),D2u(x)) = λ.

▶ Often the state space needs to be bounded and/or controls
need to be in a restricted class.
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What We Intend to Do?

1. Formulation: general 1-dimensional diffusion model with
general boundary behavior.

2. Holding/backorder and ordering costs: general and relaxed
conditions.

3. New approach: weak convergence.

4. Result: the (s,S) policy is optimal in the admissible class of
general impulse controls under very mild conditions.



Assumptions: Boundary Points

(a) Both the speed measure M and the scale function S of the
process X0 are absolutely continuous with respect to Lebesgue
measure.
The operator of X0 is

Af (x) =
1

2

d

dM

[
df (x)

dS

]
, ∀x ∈ I.

(b) The left boundary a is attracting and the right boundary b is
non-attracting.

▶ Moreover, when b is a natural boundary, M[y , b) < ∞ for each
y ∈ I.

▶ The boundaries a = −∞ and b = ∞ are required to be
natural.

Remark
These conditions are more general than the negative drift condition
commonly used in the literature.
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Assumptions: Costs

(a) The holding/back-order cost function c0 : I → R+ is
continuous. Moreover, at the boundaries

lim
x→a

c0(x) =: c0(a) ∈ R+, lim
x→b

c0(x) =: c0(b) ∈ R+;

we require c0(±∞) = ∞. Finally, for each y ∈ I,∫ b

y
c0(v)dM(v) < ∞. (1)

(b) The function c1 : R → R+ is continuous with c1 ≥ k1 > 0 for
some constant k1.

Some examples:

c1(y , z) = k1 + k2(z − y), c1(y , z) = k1 + k2
√
z − y .
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Some Remarks Concerning the Costs

In the literature ([?, ?, ?]),

▶ Usually the holding/back-order cost function is assumed to be
convex, monotone, and/or with certain growth conditions.

▶ The ordering cost function usually takes the form of “fixed
plus proportional cost” or is assumed to be concave.

▶ Compared with our previous work ([?]), this work also
removes many structural assumptions on c0 and c1.

For example, the requirement that c0 approaches ∞ at each
boundary and the rather restrictive modularity condition of
that paper on c1 are unnecessary.
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The Basic Strategy

1. First examine the inventory process under the (s, S)-policy
with s = y and S = z :
The cost of such a policy is given by a nonlinear function
F (y , z), y < z ∈ E and an optimal (s∗, S∗)-policy exists under
certain conditions.

2. Next we construct a particular auxiliary function G0(x), x ∈ I.
The function G0 solves a system similar to but different from
the long-term QVI.

3. Finally we establish optimality of the (s∗,S∗) ordering policy
in the general class of admissible policies via weak
convergence and appropriate approximation of G0.



The Basic Strategy

1. First examine the inventory process under the (s, S)-policy
with s = y and S = z :
The cost of such a policy is given by a nonlinear function
F (y , z), y < z ∈ E and an optimal (s∗, S∗)-policy exists under
certain conditions.

2. Next we construct a particular auxiliary function G0(x), x ∈ I.
The function G0 solves a system similar to but different from
the long-term QVI.

3. Finally we establish optimality of the (s∗,S∗) ordering policy
in the general class of admissible policies via weak
convergence and appropriate approximation of G0.



The Basic Strategy

1. First examine the inventory process under the (s, S)-policy
with s = y and S = z :
The cost of such a policy is given by a nonlinear function
F (y , z), y < z ∈ E and an optimal (s∗, S∗)-policy exists under
certain conditions.

2. Next we construct a particular auxiliary function G0(x), x ∈ I.
The function G0 solves a system similar to but different from
the long-term QVI.

3. Finally we establish optimality of the (s∗, S∗) ordering policy
in the general class of admissible policies via weak
convergence and appropriate approximation of G0.



The Inventory Process under the (s, S)-Policy

Let (y , z) ∈ R. Define the ordering policy (τ,Y ) by{
τ1 = inf{t ≥ 0 : X (t−) = y},
τk = inf{t > τk−1 : X (t−) = y}, k ≥ 2,

and Yk = z − y , k ≥ 1.

▶ The process X has a unique stationary distribution with
density π

π(x) =


0, a < x ≤ y ,

2κm(x)S [y , x ], y ≤ x ≤ z ,

2κm(x)S [y , z ], z ≤ x < b,

in which κ = (
∫ z
y 2S [y , x ]dM(x) + 2S [y , z ]M[z , b))−1.

▶ The constant κ gives the expected frequency of orders.



The Inventory Process under the (s, S)-Policy (cont’d)

▶ The cost of such a policy is given by

J0(τ,Y ) =
c1(y , z) + g0(z)− g0(y)

ζ(z)− ζ(y)
, (2)

where

g0(x) := 2

∫ x

x0

∫ b

u
c0(v)dM(v)dS(u),

ζ(x) := 2

∫ x

x0

M[u, b)dS(u),

and x0 is the initial inventory.



▶ Note that for any y < z ∈ E ,

Ez

[∫ τy

0
c0(X0(s))ds

]
= g0(z)−g0(y), Ez [τy ] = ζ(z)−ζ(y).

▶ Also c1(y , z) is the ordering cost.

▶ Thus the right-hand side of Eq. (2) has a natural
interpretation:

c1(y , z) + g0(z)− g0(y)

ζ(z)− ζ(y)
=

expected total cost per cycle

expected cycle length
.
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The Function F

Define

F (y , z) :=
c1(y , z) + g0(z)− g0(y)

ζ(z)− ζ(y)
, (y , z) ∈ R,

Suppose

(a) The boundary a is regular; or exit; or a is a natural boundary
for which either (i) or (ii) hold:

(i) c0(a) = ∞;
(ii) c0(a) < ∞, the function F0(·, z) is strictly decreasing in a

neighborhood of a for each z ∈ E and there exists some
(ŷ , ẑ) ∈ R such that F0(ŷ , ẑ) < c0(a).

(b) The boundary b is entrance; or b is natural for which either
(i) or (ii) hold:

(i) c0(b) = ∞;
(ii) c0(b) < ∞, F0(y , ·) is strictly increasing in a neighborhood of

b for every y ∈ E and there exists some (ỹ , z̃) ∈ R such that
F0(ỹ , z̃) < c0(b).



Nonlinear Optimization and Optimal (s, S) Policy

Under these conditions:

▶ There exists a pair (y∗, z∗) ∈ R such that

F (y∗, z∗) = F∗ := inf {F (y , z) : (y , z) ∈ R} . (3)

▶ The (y∗, z∗)-policy is optimal in the class of all (s,S) ordering
policies

F∗ = F (y∗, z∗) = J0(τ
∗,Y ∗).

The operators:

Af (x) =
1

2

d

dM

[
df (x)

dS

]
, ∀x ∈ I,

Bf (y , z) = f (z)− f (y), ∀(y , z) ∈ R.
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The Auxiliary Function G0

Define
G0(x) = g0(x)− F∗ζ(x), x ∈ E .

▶ G0 ∈ C (E) ∩ C 2(I) and G0 extends uniquely to E .
▶ G0 is a solution of the system

Af (x) + c0(x)− F∗ = 0, x ∈ I,
Bf (y , z) + c1(y , z) ≥ 0, (y , z) ∈ R

f (x0) = 0,
Bf (y∗0 , z

∗
0 ) + c1(y

∗
0 , z

∗
0 ) = 0.

(4)

▶ The system (4) is similar to but different from the usual QVI
for long-term average impulse control problem:

min

{
Au(x) + c0(x)− F∗, min

z∈E
[Bu(x , z) + c1(x , z)]

}
= 0, ∀x ∈ E .



The Verification?

Let βn be a localizing sequence. Then

Ex0 [G0(X (t ∧ βn))]− G0(x0)

= Ex0

[∫ t∧βn

0
AG0(X (s))ds +

∞∑
k=1

I{τk≤t∧βn}BG0(X (τk−),X (τk))

]

≥ Ex0

[∫ t∧βn

0
[F∗ − c0(X (s))]ds −

∞∑
k=1

I{τk≤t∧βn}c1(X (τk−),X (τk))

]

and hence

F∗ − lim inf
t→∞

lim inf
n→∞

1

t
Ex0 [G0(X (t ∧ βn))]

≤ lim sup
t→∞

1

t
E
[∫ t

0
c0(X (s))ds +

∞∑
k=1

I{τk≤t}c1(X (τk−),X (τk))

]
=J0(τ,Y )

NOT SO FAST if the state space is unbounded.
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Previous Attempts

▶ Use smooth pasting to construct a solution to the QVI.
Many structural assumptions on the costs functions c0, c1 are
required; not natural.

▶ Optimality in a smaller class:
Optimality in the restricted class of impulse controls so that
the transversality condition is satisfied.

▶ Ad hoc comparison result:
For specific models, it is sufficient to consider policies whose
order-to locations are uniformly bounded above.



Expected Occupation and Ordering Measures

Define

µ0,t(Γ0) =
1

t
E
[∫ t

0
IΓ0(X (s))ds

]
, Γ0 ∈ B(E),

µ1,t(Γ1) =
1

t
E
[ ∞∑
k=1

I{τk≤t}IΓ1(X (τk−),X (τk))

]
, Γ1 ∈ B(R).

If a is a reflecting boundary, define the average expected local time
measure µ2,t

µ2,t({a}) = 1
tE[La(t)], t > 0,

in which La denotes the local time of X at a.



Some Observations

We have the following observations:

▶ Let {ti : i ∈ N} be such that limi→∞ ti = ∞. If {µ0,ti : i ∈ N}
is not tight, then J0(τ,Y ) = ∞.

▶ If J0(τ,Y ) < ∞, then {µ0,t} is tight.

▶ But J0(τ,Y ) < ∞ does not necessarily imply that {µ1,t} is
tight.

▶ For each µ0 attained as a weak limit of some sequence {µ0,tj}
as tj → ∞, we have∫

E
c0(x)µ0(dx) ≤ J0(τ,Y ) < ∞.



Approximation of the Function G0

Define

Gn(x) =
G0(x)

1 + 1
nh(G0(x))

, x ∈ E , (5)

where

h(x) =

−1
8x

4 + 3
4x

2 + 3
8 , for |x | ≤ 1,

|x |, for |x | ≥ 1.

Under some technical assumptions on G0, we can show that

lim
n→∞

AGn(x) = AG0(x) ∀x ∈ I

lim
n→∞

BGn(y , z) = BG0(y , z) ∀(y , z) ∈ R.



Key Observations
Let (τ,Y ) ∈ A0 with J0(τ,Y ) < ∞. Let {tj : j ∈ N} be a
sequence such that limj→∞ tj = ∞ and

J0(τ,Y ) = lim
j→∞

1

tj
E
[∫ tj

0
c0(X (s))ds +

∞∑
k=1

I{τk≤tj}c1(X (τk−),X (τk))

]
= lim

j→∞

(∫
E
c0(x)µ0,tj (dx) +

∫
R
c1(y , z)µ1,tj (dy × dz)

)
.

We have

0 = lim
j→∞

(∫
E
AGn(x)µ0(dx) +

∫
R
BGn(y , z)µ1,tj (dy × dz)

)
, ∀n ∈ N

and

lim inf
n→∞

lim inf
j→∞

∫
R
(BGn(y , z) + c1(y , z))µ1,tj (dy × dz) ≥ 0,

lim inf
n→∞

∫
E
(AGn(x) + c0(x))µ0(dx) ≥

∫
E
(AG0(x) + c0(x))µ0(dx) ≥ F∗.
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∫
R
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Optimality

J0(τ,Y )

= lim inf
n→∞

lim
j→∞

(∫
E
(AGn(x) + c0(x))µ0,tj (dx)

+

∫
R
(BGn(y , z) + c1(y , z))µ1,tj (dy × dz)

)
≥ lim inf

n→∞
lim inf
j→∞

∫
E
(AGn(x) + c0(x))µ0,tj (dx)

+ lim inf
n→∞

lim inf
j→∞

∫
R
(BGn(y , z) + c1(y , z))µ1,tj (dy × dz)

≥ lim inf
n→∞

∫
E
(AGn(x) + c0(x))µ0(dx)

+ lim inf
n→∞

lim inf
j→∞

∫
R
(BGn(y , z) + c1(y , z))µ1,tj (dy × dz)

≥ F ∗
0 .



The Main Result

Theorem

(a) Let (τ,Y ) ∈ A0. Then

J0(τ,Y ) ≥ F∗.

(b) Moreover, the (s, S)-policy with s = y∗ and S = z∗ is an
optimal impulse policy.



Some Remarks

▶ The ergodicity of the inventory process under the (s,S)-policy
gives J(τ∗,Y ∗) = F∗.

▶ To establish the optimality of the (s∗, S∗)-policy in the general
admissible class A0, the usual approach needs to solve the
associated QVI and verify the transversality condition. These
are not easy; in particular if the state space is unbounded.

▶ This work proposes a weak convergence approach together
with an appropriate approximation of the function G0 to
establish the optimality.



Drifted Brownian motion inventory models

▶ The classical model drifted Brownian motion on (−∞,∞)

▶ State:

X0(t) = x0 − µt + σW (t), x0 ∈ (−∞,∞)

▶ Costs:

c0(x) =

{
−cb x , x < 0,

ch x , x ≥ 0,
and c1(y , z) = k1 + k2(z − y)

in which cb, ch, k1, k2 > 0.

▶ Drifted Brownian motion with reflection at {0}
▶ State:

X0(t) = x0 − µt + σW (t) + L0(t), x0 ∈ [0,∞)

▶ Costs:

c0(x) = k3x + k4e
−x , and c1(y , z) = k1 + k2

√
z − y ,

▶ In both models, the (s, S)-policy is optimal.



A Counter-intuitive Example

▶ Inventory level (in absence if ordering) is X0(t) = W (t)− t,
for t ≥ 0,

▶ The cost functions are specified

c0(x) = 2|x |, ∀x ∈ R, and c1(y , z) = k1+(z−y), ∀(y , z) ∈ R.

▶ A special ordering policy (τ,Y ):
▶ It runs in cycles, each of which is composed of two phases.
▶ For cycle i = 1, 2, 3, . . .,

▶ Phase 1 consists of using the (0, 1)-ordering policy a total of
2i−1 times; the length of each sub-cycle is a random variable
having mean 1.

▶ Phase 2 involves a single (0, 2(i−1)/2)-ordering policy followed
immediately by using the (2(i−1)/2, 2(i−1)/2)-ordering policy
2i−1 times.

▶ Then (a) J0(τ,Y ) < ∞; (b) {µ0,t : t > 0} is tight as t → ∞;
and (c) {µ1,t : t > 0} is not tight.



Geometric Brownian Motion Inventory Model

▶ In the absence of ordering, the inventory process X0 satisfies

dX0(t) = −µX0(t)dt+σX0(t)dW (t), X (0) = x0 ∈ I = (0,∞),

in which µ, σ > 0 and W is a standard Brownian motion.

▶ The scale and speed measures are: for [l , x ] ⊂ I

S [l , x ] = σ2

2µ+σ2

[
x1+2µ/σ2 − l1+2µ/σ2

]
and

M[l , x ] = 1
2µ+σ2

[
l−1−2µ/σ2 − x−1−2µ/σ2

]
.

▶ Note that S(0, x ] < ∞ and S [x ,∞) = ∞ and thus 0 is
attracting and ∞ is non-attracting. Both boundaries are
natural.



Geometric Brownian Motion Inventory Model

▶ State:

dX0(t) = −µX0(t) dt+σX0(t) dW (t), X (0) = x0 ∈ I = (0,∞),

in which µ, σ > 0.
▶ Costs:

▶ Case 1

c0(x) = k3x + k4x
β , and c1(y , z) = k1 + k2

√
z − y ,

▶ Case 2

c0(x) =

{
k4(1− x), 0 ≤ x ≤ 1,

k3(x − 1), x ≥ 1

c1(y , z) = k1 +
k2
2
(y−1/2 − z−1/2) +

k2
2
(z − y)

▶ In both models, the (s, S)-policy is optimal.



Examples when the (s, S)-policy is NOT optimal

▶ State:

dX0(t) = −µX0(t) dt+σX0(t) dW (t), X (0) = x0 ∈ I = (0,∞),

in which µ, σ > 0.

▶ Costs:

c1(y , z) = k1 + k2(z
η − yη), c0(x) = k3x + k4x

β.

where 0 < η ≤ 1 and β < 0.

▶ k4 = 0, k2, k3 > 0: “no-order” policy is optimal

▶ k2 = k3 = 0, k4 > 0: no optimal inventory control policy.



Summary

In this work, we

▶ formulated an impulse inventory control problem for a general
one-dimensional diffusion with general boundary conditions
under the long-term average cost criterion,

▶ used a weak convergence approach together with an
appropriate approximation of the function G0 to establish the
optimality of the (s∗,S∗) policy in the general admissible class
of impulse controls.

▶ provided a nonlinear optimization approach to determine the
optimal levels s∗ and S∗,

▶ studied geometric and drifted Brownian motion inventory
examples for illustration.



Thank you!
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