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Formulation: The Inventory Process

» The inventory process (in the absence of orders):
dXo(t) = p(Xo(t))dt+o(Xo(t))dW(t), X(0) =x € Z = (a, b),

where —0co < a < b < +0.
> In the absence of restocking
» demands tend to reduce the inventory



Formulation: The Inventory Process

» The inventory process (in the absence of orders):
dXo(t) = p(Xo(t))dt+o(Xo(t))dW(t), X(0) =x € Z = (a, b),

where —oco < a < b < +o0.
> In the absence of restocking
» demands tend to reduce the inventory ~» a is an attracting
point:
Pf{rar <7} >0,Va<x<r<hb.

a may be a regular, exit or natural boundary point.



Formulation: The Inventory Process

» The inventory process (in the absence of orders):
dXo(t) = p(Xo(t))dt+o(Xo(t))dW(t), X(0) =x € Z = (a, b),

where —oco < a < b < +o0.
> In the absence of restocking
» demands tend to reduce the inventory ~» a is an attracting
point:
Pf{rar <7} >0,Va<x<r<hb.
a may be a regular, exit or natural boundary point.

> reasonable restrictions on “returns”: the inventory level can
never reach b in finite time



Formulation: The Inventory Process

» The inventory process (in the absence of orders):
dXo(t) = p(Xo(t))dt+o(Xo(t))dW(t), X(0) =x € Z = (a, b),

where —oco < a < b < +o0.
> In the absence of restocking

» demands tend to reduce the inventory ~» a is an attracting
point:
Pf{rar <7} >0,Va<x<r<hb.

a may be a regular, exit or natural boundary point.
> reasonable restrictions on “returns”: the inventory level can
never reach b in finite time ~» b is a non-attracting point:

P{mp— <7} =0,Va<r<x<b.

b may be an entrance or natural point.



Inventory Management

The manager can decide WHEN and HOW MUCH to restock the
inventory:

WHEN: 0 < ©n < 1 < m <

Vol

HOW MUCH: Y1 Y2 Y3



Inventory Management

The manager can decide WHEN and HOW MUCH to restock the
inventory:

WHEN: 0 < nn < 1 < 7w <

Vol

HOW MUCH: Yy Y> Y3

Foreach k=1,2,...,
> Tk, the kth order time, is an {F;}-stopping time, and

> Y, the kth order size, is an {F;, }-measurable nonnegative
random variable.

» X(7k—): the inventory level just before the kth order,
» X(7x): the inventory level at the kth order,

X(Tk) :X(Tk—)—|— Y, > X(Tk—)



Admissible Policies

>» A={(1,Y) = (&, Yx),k =1,2,...}, in which

» {7x} is an increasing sequence of {F;}-stopping times,
Yk is an {F;, }-measurable nonnegative random variable,
X(mk) = X(1—) + Yk € & (the state space).

v

v

» For models in which a is a reflecting boundary point, the class
Ao C A consists of those policies (7, Y') for which

lim t7'E[L,(t)] =0

t—00



Inventory Management

» The controlled inventory

X(6) = X(0-)+ [ u(X()as+ [ o(X()aws )+ g Vi

k=1
X(t) €€,

> The state space & :

(a,b), if a and b are natural boundaries,
< [a,b), if ais attainable and b is natural,
(a, b], if ais natural and b is entrance,

[a, b], if ais attainable and b is entrance.



The (s, S) Policy

X0

S

Question: Is the (s, S)-policy optimal? In what sense?



Long-term Average Cost

» ¢o:Z — RT: holding/back-order cost rate.

» ¢ R — RT: ordering cost function, where
R={(y,z2)€€&*:y<z}, R={(y,2)€&?:y <z}

» dky > 0 s.t. ¢; > ky; thus kq is the fixed cost for each order.



Long-term Average Cost

» ¢o:Z — RT: holding/back-order cost rate.

» ¢ R — RT: ordering cost function, where
R={(y.2)€&:y<z}, R={(y,2)€&:y<z}.
» Jki; > 0 s.t. ¢ > kq; thus ki is the fixed cost for each order.

Long-term Average Cost:

J(7,Y) = lim sup%ExO {/Ot co(X(s))ds

t—00

+ Z /{Tkét}cl(X(Tk—), X(7k))|-
k=1
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Long-term Average Control Problems
The Usual Approaches

» Vanishing discount method ([?, ?]):
» Discount problem

av®(x) + F(x, Dv*(x), D*v®(x)) = 0,
» the limiting behavior of —av® and v(x) — v¥(xp) as « J. 0.

» Long-term average HJB equation [?, ?, ?]:

F(x, Du(x), D?u(x)) = .



Long-term Average Control Problems
The Usual Approaches

» Vanishing discount method ([?, ?]):
» Discount problem

av®(x) + F(x, Dv*(x), D*v®(x)) = 0,
» the limiting behavior of —av® and v(x) — v¥(xp) as « J. 0.

» Long-term average HJB equation [?, ?, ?]:

F(x, Du(x), D?u(x)) = .

» Often the state space needs to be bounded and/or controls
need to be in a restricted class.



What We Intend to Do?

1. Formulation: general 1-dimensional diffusion model with
general boundary behavior.

2. Holding/backorder and ordering costs: general and relaxed
conditions.

3. New approach: weak convergence.

4. Result: the (s, S) policy is optimal in the admissible class of
general impulse controls under very mild conditions.



Assumptions: Boundary Points

(a) Both the speed measure M and the scale function S of the
process Xp are absolutely continuous with respect to Lebesgue

measure.
The operator of Xj is
1 d [df(x)
Af = - T.
(x) 2dl\/l[d5 } vxe

(b) The left boundary a is attracting and the right boundary b is
non-attracting.
» Moreover, when b is a natural boundary, M[y, b) < oo for each

yel
» The boundaries a = —00 and b = oo are required to be
natural.
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(a) Both the speed measure M and the scale function S of the
process Xp are absolutely continuous with respect to Lebesgue

measure.
The operator of Xj is
1 d [df(x)
Af = - T.
(x) 2dl\/l[d5 } vxe

(b) The left boundary a is attracting and the right boundary b is
non-attracting.
» Moreover, when b is a natural boundary, M[y, b) < oo for each

yel
» The boundaries a = —00 and b = oo are required to be

natural.

Remark
These conditions are more general than the negative drift condition

commonly used in the literature.



Assumptions: Costs

(a) The holding/back-order cost function ¢y : Z — R™ is
continuous. Moreover, at the boundaries

lim co(x) =: co(a) € R, Iimb co(x) =: co(b) € RF;
X—

X—a

we require ¢o(+00) = oco. Finally, for each y € Z,

b
/ co(v)dM(v) < oc. (1)

(b) The function ¢; : R — R¥ is continuous with ¢; > ki > 0 for
some constant k.



Assumptions: Costs

(a) The holding/back-order cost function ¢y : Z — R™ is
continuous. Moreover, at the boundaries

lim co(x) =: co(a) € R, Iimb co(x) =: co(b) € RF;
X—

X—a

we require ¢o(+00) = oco. Finally, for each y € Z,

b
/ co(v)dM(v) < oc. (1)

(b) The function ¢; : R — R¥ is continuous with ¢; > ki > 0 for
some constant k.

Some examples:

aly,z) =ki+k(z—y), caly,z) =k +kvz—y.



Some Remarks Concerning the Costs

In the literature ([?, 7, ?]),

» Usually the holding/back-order cost function is assumed to be
convex, monotone, and/or with certain growth conditions.

» The ordering cost function usually takes the form of “fixed
plus proportional cost” or is assumed to be concave.



Some Remarks Concerning the Costs

In the literature ([?, 7, ?]),
» Usually the holding/back-order cost function is assumed to be
convex, monotone, and/or with certain growth conditions.
» The ordering cost function usually takes the form of “fixed
plus proportional cost” or is assumed to be concave.

» Compared with our previous work ([?]), this work also
removes many structural assumptions on ¢y and c3.

For example, the requirement that ¢y approaches oo at each
boundary and the rather restrictive modularity condition of
that paper on ¢; are unnecessary.



The Basic Strategy

1. First examine the inventory process under the (s, S)-policy
with s=y and S = z:
The cost of such a policy is given by a nonlinear function
F(y,z),y < z € £ and an optimal (s, S.)-policy exists under
certain conditions.
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The function Gy solves a system similar to but different from
the long-term QVI.



The Basic Strategy

1. First examine the inventory process under the (s, S)-policy
with s=y and S = z:
The cost of such a policy is given by a nonlinear function
F(y,z),y < z € £ and an optimal (s, S.)-policy exists under
certain conditions.

2. Next we construct a particular auxiliary function Gop(x),x € Z.
The function Gy solves a system similar to but different from
the long-term QVI.

3. Finally we establish optimality of the (s, S.) ordering policy
in the general class of admissible policies via weak
convergence and appropriate approximation of Gp.



The Inventory Process under the (s, S)-Policy

Let (y,z) € R. Define the ordering policy (7, Y) by

i =inf{t >0: X(t—) =y},
{7’k:inf{t’>7'k_1:)((1_'—):_)/}7 k22’ and Yk z—=Y, k_]-

» The process X has a unique stationary distribution with
density 7
0, a<x<y,
7T(X) = 2Hm(X)5[)/>X]a y<x<z
2km(x)Sly, z], z<x < b,

in which k = (fyz 2S[y, x]dM(x) + 2S|y, zZ]M[z, b)) L.

» The constant x gives the expected frequency of orders.



The Inventory Process under the (s, S)-Policy (cont'd)

» The cost of such a policy is given by

_aly,z) +&(z) — gly)
L e e 1 I @)

where
X b
go(x) ::2/ / co(v)dM(v)dS(u),
C(x) =2 / " M[u, b)dS(u).

and xp is the initial inventory.



> Note that forany y < z € &,

E, {/OU CO(XO(S))ds} = go(2)—go(y), Ezlry] =¢(2)—C(y).

» Also ci(y, z) is the ordering cost.



> Note that forany y < z € &,
E, {/OU CO(XO(S))ds} = go(2)—go(y), Ezlry] =¢(2)—C(y).

» Also ci(y, z) is the ordering cost.

» Thus the right-hand side of Eq. (2) has a natural
interpretation:

ci(y,z) + go(z) — go(y)  expected total cost per cycle

¢(z) = C(y) expected cycle length




The Function F
Define

Suppose

a e boundary a is regular; or exit; or a is a natural boundary
The bound [ | [ [ | bound
for which either (i) or (ii) hold:
(i) co(a) = o0;
(i) co(a) < oo, the function Fo(-,z) is strictly decreasing in a
neighborhood of a for each z € £ and there exists some
(¥,Z) € R such that Fo(y,2) < c(a).
e boundary b is entrance; or b is natural for which either
b) The boundary b i bi | for which eith
(i) or (ii) hold:
(i) co(b) = oo;
(i) co(b) < o0, Fo(y, ) is strictly increasing in a neighborhood of
b for every y € £ and there exists some (y,Zz) € R such that

Fo(y,z) < co(b).



Nonlinear Optimization and Optimal (s, S) Policy

Under these conditions:

» There exists a pair (yx, z.) € R such that

F(y«,2e) = Fo :=inf{F(y,2): (v,z) € R}. (3)

» The (yu, z:)-policy is optimal in the class of all (s, S) ordering
policies
Fo=F(ys; 2) = Jo(77, Y7).



Nonlinear Optimization and Optimal (s, S) Policy

Under these conditions:

» There exists a pair (yx, z.) € R such that

F(y«,2e) = Fo :=inf{F(y,2): (v,z) € R}. (3)

» The (yu, z:)-policy is optimal in the class of all (s, S) ordering
policies
Fo=F(ys; 2) = Jo(77, Y7).

The operators:

Af(x) = 14 [df(x)] , Vx €T,

Bf(yvz): (Z)—f(y), V(y,z) cR.




The Auxiliary Function Gy

Define
Go(x) = go(x) — F.{(x), x€&.

» Go € C(£)N C?(T) and Gy extends uniquely to &.
> G is a solution of the system

Af(x)+ co(x) — F. = 0, xel,
Bf(y,z)+al(y,z) > 0, (y,z)eR (4)
f(Xo) = 0,
Bf(vg,2z5) + alyg.z) = O.

» The system (4) is similar to but different from the usual QVI
for long-term average impulse control problem:

min {Au(x) + co(x) — Fu, rzneig[Bu(x, z) + ca(x, z)]} =0, Vx e €.



The Verification?

Let B, be a localizing sequence. Then
Exo[Go(X(t A n))] — Go(xo)

tABn o0
= Exo {/ AGo(X(S))dS + Z /{Tkgt/\ﬁ,,}BGO(X(Tk_)v X(Tk)):|
0 k=1

tABn 0
> Eq [ [ - atxees - 3 lmwn}q(xw—),xm»]

k=1



The Verification?

Let B, be a localizing sequence. Then
Exo[Go(X(t A n))] — Go(xo)

tABn o0
= Exo {/ AGo(X(S))dS + Z /{Tkgt/\ﬁ,,}BGO(X(Tk_)v X(Tk)):|
0 k=1

tABn 0
> Eq [ |~ atxteas - > lmwn}q(xm—),xm»]
and hence

NPT
F. — Iltrrl)!)rgfllnnllorlf EEXO[GO(X(t A Bn))]

t—oo

< limsup 1E[/C0(X(S))d5 + I{Tkgt}cl(X(Tk_)7X(Tk)):|:J0(T’ Y)
0 k=1



The Verification?

Let B, be a localizing sequence. Then
Exo[Go(X(t A n))] — Go(xo)

tABn o0
= ]Exo {/ AGo(X(S))dS + Z I{TkSt/\Bn}BGO(X(Tk_)7 X(Tk)):|
0 k=1

> [ [1F - alx(enias - gjl < a(X(), X ()
and hence
F. — liminf liminf %EXO[GO(X(t A B))]
i

< limsup 1E[/C0(X(S))d5 + I{Tkgt}cl(X(Tk_)7X(Tk)):|:J0(T’ Y)
0 k=1

NOT SO FAST if the state space is unbounded.



Previous Attempts

» Use smooth pasting to construct a solution to the QVI.
Many structural assumptions on the costs functions ¢y, ¢1 are
required; not natural.

» Optimality in a smaller class:
Optimality in the restricted class of impulse controls so that
the transversality condition is satisfied.

» Ad hoc comparison result:
For specific models, it is sufficient to consider policies whose
order-to locations are uniformly bounded above.



Expected Occupation and Ordering Measures

Define

po,t(To) = 115[/; /ro(X(S))dS}a Mo € B(E),

() = E[Z/{Tk<t}/r1< () X@D)|. e B@),

If ais a reflecting boundary, define the average expected local time
measure (i ¢

p2e({a}) = {E[La(t)], t >0,

in which L, denotes the local time of X at a.



Some Observations

We have the following observations:
» Let {t; : i € N} be such that limj_,o tj = co. If {po, : i € N}
is not tight, then Jo(7, Y) = oc.
> If Jo(7,Y) < oo, then {pug+} is tight.
» But Jo(7, Y) < oo does not necessarily imply that {y1 .} is
tight.

> For each g attained as a weak limit of some sequence {1+, }
as t; — oo, we have

/SCO(X) po(dx) < Jo(7,Y) < 0.



Approximation of the Function Gy

Define
Go(x)

R ()

xe€é, (5)

where

—%x4+%x2+%, for |x| <1,
h(x) =

Ix], for |x| > 1.
Under some technical assumptions on Gy, we can show that
nIl_)rT;() AGp(x) = AGp(x) Vxel
lim BGy(y, z) = BGo(y, 2) V(y,z) € R.



Key Observations
Let (7, Y) € Ag with Jo(7,Y) < co. Let {tj : j € N} be a
sequence such that lim;_,, tj = oo and

Jo(T,Y) = lim 11@[/0'-7 co(X(s))ds + > /{Tkgtj}cl(X(Tk—),X(Tk))}

j—o0 t;
J J k=1

Jj—00

— lim (/gco(x),uovtj(dx)+/7QC1(y,z)u17tj(dy % dz)).



Key Observations
Let (7, Y) € Ag with Jo(7,Y) < co. Let {tj : j € N} be a
sequence such that lim;_,, tj = oo and

Jo(T,Y) = lim 11@[/0@' co(X(s))ds + > /{Tkgtj}cl(X(Tk—),X(Tk))}

j—oo t;
J J k=1
Jj—00

= lim </gc0(x),u07tj(dx)—&—/Rcl(y,z)uuj(dy X dz)).

We have

0= lim </ AGp(x) po(dx) +/ BGn(y, z) pa,¢;(dy x dz)), VneN
J—00 g R

and
liminf lim inf/ (BGn(y, z) + aly, z)) pa,,(dy x dz) > 0,
n—oo J—0 ﬁ ’

Iinrigf /(AG,,(X) + co(x)) po(dx) > /(AG()(X) + co(x)) po(dx) > Fi.
JE JE



Optimality

Jo(7,Y)
= Iznlgrlfjingo </g(AG,,(X) + co(x)) po,t; (dx)
+ /R(BG,,(y,z) + a(y, z)) pa,g(dy x dz)>

> liminflim inf/(AGn(x) + co(x)) po,¢;(dx)

n—oo  j—oo i

+ liminflim inf/ (BGn(y, z) + aly, 2)) pa,;(dy x dz)

n—oo  j—oo R

n—oo g

> lim inf/(AG,,(x) + co(x)) po(dx)

+ Iiminfliminf/
n—oo  j—oo E>

7z(BGn(y, z) + ci(y, 2)) p1,(dy x dz)

> F;.



The Main Result

Theorem

(a) Let (1,Y) € Ag. Then
Jo(’i', Y) > F,.

(b) Moreover, the (s, S)-policy with s =y, and S = z, is an
optimal impulse policy.



Some Remarks

» The ergodicity of the inventory process under the (s, S)-policy
gives J(7*, Y*) = F,.

» To establish the optimality of the (s, Si)-policy in the general
admissible class Ag, the usual approach needs to solve the
associated QVI and verify the transversality condition. These
are not easy; in particular if the state space is unbounded.

» This work proposes a weak convergence approach together
with an appropriate approximation of the function Gy to
establish the optimality.



Drifted Brownian motion inventory models

» The classical model drifted Brownian motion on (—o0, o)
» State:

Xo(t) =x0 — pt+oW(t), xo € (—00,00)

» Costs:

—cp X, x<0,
okx)=<{ and ci(y,z) = ki + ka(z — y)
Ch X, x>0,

in which ¢, cp, kl, ko > 0.

» Drifted Brownian motion with reflection at {0}
» State:

Xo(t) = xo — ut + o W(t) + Lo(t), xo € [0, 0)
» Costs:

co(x) = ksx + kge™, and c(y,z) = ki + ko/z— y,

» In both models, the (s, S)-policy is optimal.



A Counter-intuitive Example

» Inventory level (in absence if ordering) is Xo(t) = W(t) —t,
for t > 0,

» The cost functions are specified

c(x) =2|x|, Vx € R, and ci(y,z) = ki+(z—y), Y(y,z) € R.

» A special ordering policy (7, Y):
> It runs in cycles, each of which is composed of two phases.
» Forcyclei=1,2,3,...,
> Phase 1 consists of using the (0, 1)-ordering policy a total of
2'=1 times; the length of each sub-cycle is a random variable
having mean 1.
> Phase 2 involves a single (0, 2(i’1)/2)-ordering policy followed
immediately by using the (20=1/2 20=1/2)_ordering policy
2'~1 times.

» Then (a) Jo(7, Y) < o0; (b) {po,e : t > 0} is tight as t — oo;
and (c) {p1,¢ : t > 0} is not tight.



Geometric Brownian Motion Inventory Model

> In the absence of ordering, the inventory process Xj satisfies
dXo(t) = —pXo(t)dt+oXo(t)dW(t), X(0)=x0€Z = (0,00),

in which p;0 > 0 and W is a standard Brownian motion.

» The scale and speed measures are: for [/,x] CZ

S[l,x] = T‘fgg [X1+2“/‘72 — /1+2“/”2} and

Ml xX] = g |12/ — 22wl

> Note that 5(0, x] < co and S[x,00) = co and thus 0 is
attracting and oo is non-attracting. Both boundaries are
natural.



Geometric Brownian Motion Inventory Model
» State:
dXo(t) = —pXo(t) dt+aXo(t) dW(t), X(0)=xo € Z = (0,00),

in which p, o > 0.

» Costs:
» Case 1
co(x) = ksx + kax”, and aly,z)=ki+kvz—y,
» Case 2

o(x) ka(1 — x), 0<x<1,
X) =
0 ka(x—1), x>1

k k
aly.2)=hk+5 (=2 + Z(z-y)

> In both models, the (s, S)-policy is optimal.



Examples when the (s, S)-policy is NOT optimal

» State:
dXo(t) = —pXo(t) dt+oXo(t) dW(t), X(0)=xo € Z = (0,00),
in which p,0 > 0.
» Costs:
aly,z) = ki + ka(2" — y"), co(x) = kax + kgx®.

where 0 <n<1and S <0.
> kg =0, ko, k3 > 0: “no-order” policy is optimal

> ko = k3 =0, kg > 0: no optimal inventory control policy.



Summary

In this work, we

» formulated an impulse inventory control problem for a general
one-dimensional diffusion with general boundary conditions
under the long-term average cost criterion,

» used a weak convergence approach together with an
appropriate approximation of the function Gy to establish the
optimality of the (s., Si) policy in the general admissible class
of impulse controls.

» provided a nonlinear optimization approach to determine the
optimal levels s, and S,,

» studied geometric and drifted Brownian motion inventory
examples for illustration.



Thank youl!
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